Esta ilustración muestra el telescopio de rayos X NuSTAR de la NASA en el espacio. Dos componentes voluminosos están separados por una estructura de 10 metros llamada mástil desplegable o pluma. - NASA/JPL-CALTECH
MADRID, 2 Mar. (EUROPA PRESS) -
Luz parásita que 'empaña' la investigación del observatorio de rayos X NuSTAR de la NASA ha sido aprovechada para aprender sobre un objeto cósmico, en este caso, una estrella de neutrones.
Durante casi 10 años, el observatorio espacial NuSTAR (Nuclear Spectroscopic Telescope Array) ha estado estudiando algunos de los objetos de mayor energía del universo, como estrellas muertas en colisión y enormes agujeros negros que se alimentan de gas caliente.
Pero una parte de la luz recibida, que se filtra a través de los lados del observatorio, puede interferir con las observaciones al igual que el ruido externo puede ahogar una llamada telefónica.
Pero ahora los miembros del equipo han descubierto cómo usar esa luz de rayos X perdida para aprender sobre los objetos en la visión periférica de NuSTAR mientras realizan observaciones dirigidas normales. Este desarrollo tiene el potencial de multiplicar los conocimientos que proporciona NuSTAR. Un nuevo artículo científico en The Astrophysical Journal describe el primer uso de las observaciones de luz perdida de NuSTAR.
Pepitas de material que quedan después del colapso de una estrella, las estrellas de neutrones son algunos de los objetos más densos del universo, solo superados por los agujeros negros. Sus poderosos campos magnéticos atrapan partículas de gas y las canalizan hacia la superficie de la estrella de neutrones. A medida que las partículas se aceleran y activan, liberan rayos X de alta energía que NuSTAR puede detectar.
El nuevo estudio describe un sistema llamado SMC X-1, que consiste en una estrella de neutrones que orbita una estrella viva en una de las dos pequeñas galaxias que orbitan la Vía Láctea (la galaxia de origen de la Tierra). El brillo de la salida de rayos X de SMC X-1 parece variar enormemente cuando se observa con telescopios, pero décadas de observaciones directas realizadas por NuSTAR y otros telescopios han revelado un patrón de fluctuaciones.
Los científicos han identificado varias razones por las que SMC X-1 cambia de brillo cuando se estudia con telescopios de rayos X. Por ejemplo, el brillo de los rayos X se atenúa a medida que la estrella de neutrones se sumerge detrás de la estrella viva con cada órbita. Según el documento, los datos de luz parásita fueron lo suficientemente sensibles como para detectar algunos de esos cambios bien documentados.
"Creo que este artículo muestra que este enfoque de luz dispersa es confiable, porque observamos fluctuaciones de brillo en la estrella de neutrones en SMC X-1 que ya hemos confirmado a través de observaciones directas", dijo en un comunicado McKinley Brumback, astrofísico de Caltech en Pasadena, California. y autor principal del nuevo estudio. "En el futuro, sería genial si pudiéramos usar los datos de luz parásita para mirar objetos cuando aún no sabemos si están cambiando regularmente en brillo y potencialmente usar este enfoque para detectar cambios".
El nuevo enfoque es posible gracias a la forma de NuSTAR, que es similar a una mancuerna o un hueso de perro: tiene dos componentes voluminosos en cada extremo de una estructura angosta de 10 metros de llamada mástil desplegable. Por lo general, los investigadores apuntan uno de los extremos voluminosos, que contiene la óptica o el hardware que recolecta los rayos X, al objeto que desean estudiar. La luz viaja a lo largo del brazo hasta los detectores, ubicados en el otro extremo de la nave espacial. La distancia entre ambos es necesaria para enfocar la luz.
Pero la luz parásita también llega a los detectores al entrar por los lados de la barrera, sin pasar por la óptica. Aparece en el campo de visión de NuSTAR junto con la luz de cualquier objeto que el telescopio observe directamente y, a menudo, es bastante fácil de identificar a simple vista: forma un círculo de luz tenue que emerge de los lados de la imagen. (Como era de esperar, la luz parásita es un problema para muchos otros telescopios espaciales y terrestres).
Un grupo de miembros del equipo de NuSTAR ha pasado los últimos años separando la luz perdida de varias observaciones de NuSTAR. Después de identificar fuentes de rayos X conocidas y brillantes en la periferia de cada observación, usaron modelos de computadora para predecir cuánta luz parásita debería aparecer en función de qué objeto brillante estaba cerca. También observaron casi todas las observaciones de NuSTAR para confirmar el signo revelador de luz parásita. El equipo creó un catálogo de alrededor de 80 objetos para los cuales NuSTAR había recopilado observaciones de luz perdida, nombrando la colección "StrayCats".
"Imagínese sentarse en una sala de cine tranquila, ver un drama y escuchar las explosiones en la película de acción de al lado", dijo Brian Grefenstette, científico investigador principal de Caltech y miembro del equipo de NuSTAR que dirige el trabajo de StrayCats. "En el pasado, así era la luz perdida: una distracción de lo que intentábamos enfocar. Ahora tenemos las herramientas para convertir ese ruido adicional en datos útiles, abriendo una forma completamente nueva de usar NuSTAR para estudiar el universo".
Por supuesto, los datos de luz parásita no pueden reemplazar las observaciones directas de NuSTAR. Aparte de que la luz parásita está desenfocada, muchos objetos que NuSTAR puede observar directamente son demasiado débiles para aparecer en el catálogo de luz parásita.
Pero Grefenstette dijo que varios estudiantes de Caltech revisaron los datos y encontraron casos de rápido brillo de objetos periféricos, que podrían ser cualquier cantidad de eventos dramáticos, como explosiones termonucleares en las superficies de las estrellas de neutrones. Observar la frecuencia y la intensidad de los cambios en el brillo de una estrella de neutrones puede ayudar a los científicos a descifrar lo que les sucede a esos objetos.