Demostrado el efecto de fricción de los terremotos a escala nanométrica

China Tras El Terremoto
REUTERS
Actualizado: miércoles, 30 noviembre 2011 20:02

MADRID 30 Nov. (EUROPA PRESS) -

Los terremotos son un tipo de desastre natural difícil de analizar. Aunque la localización de las principales fallas es bien conocida, poco se puede hacer para predecir cuándo se producirá un terremoto, o cuál será su intensidad. Ahora, a pesar de que los terremotos implican millones de toneladas de roca, investigadores de la Universidad de Pennsylvania y de la Universidad de Brown han ayudado a descubrir un aspecto de la fricción a escala nanométrica que puede conducir a una mejor comprensión de este tipo de desastres.

Robert Carpick, profesor que preside el Departamento de Ingeniería Mecánica y Mecánica Aplicada en la Escuela de Ingeniería y Ciencias Aplicadas de la Universidad de Pennsylvania, dirigió la investigación en colaboración con Terry Tullis y David Goldsby, profesores en la Universidad Brown. Los trabajos experimentales y de modelización fueron llevados a cabo por el primer autor, Qunyang Li. El trabajo ha sido publicado en la revista 'Nature'.

El equipo de investigación se centró un fenómeno inusual que ha sido observado tanto en las fallas naturales como en las simulaciones de laboratorio: los materiales se vuelven más resistentes al deslizamiento cuanto más están en contacto unos con otros. Este rasgo es, en realidad, fundamental para explicar por qué ocurren los terremotos; cuanto más tiempo pasan los materiales en contacto, mayor es la resistencia entre ellos, y más violento e inestable es el deslizamiento posterior.

Aunque geólogos, físicos e investigadores mecánicos han estudiado este fenómeno durante décadas, el mecanismo detrás de este aumento de la fricción con el tiempo sólo ha sido una hipótesis; actualmente existen dos teorías principales sobre por qué ocurre, "una hipótesis es que los puntos de contacto se deforman y crecen con el tiempo - lo que aumenta la cantidad de contacto", explica Carpick, "la otra es que la unión en los puntos de contacto se fortalece con el tiempo".

No fue sino hasta que Carpick y Tullis se reunieron en una conferencia destinada a reunir a físicos, expertos en mecánica y geólogos que se dieron cuenta de que la solución puede encontrarse al pasar de la escala masiva de los terremotos a la escala más pequeña imaginable.

"Queríamos simplificar el caso", afirma Li, "así que en nuestro experimento nos centramos en un solo punto de contacto: la punta de un microscopio de fuerza atómica". Un microscopio de fuerza atómica es una herramienta ideal para analizar la fuerza de unión en la que dos superficies se encuentran; en lugar de utilizar luz, los microscopios de fuerza atómica miden detalles a nanoescala con una punta de la sonda muy fuerte, sensible a la inserción y extracción de los átomos individuales.

Los investigadores simularon una fricción entre rocas en contacto con sílice, un componente importante en la mayoría de los materiales geológicos. Se presionó la punta de sílice sobre una superficie de sílice durante diferentes longitudes de tiempo y luego se midió la cantidad de fricción experimentada. Los científicos repitieron estos experimentos con superficies hechas de distintos materiales, como diamante y grafito que, al ser químicamente inertes, no forman fácilmente vínculos químicos con el sílice. Los resultados mostraron una marcada diferencia según el tiempo que transcurría durante la fricción entre los materiales.

La duración de la fricción observada en el experimento del sílice era tan intensa que los investigadores se encontraron con otro misterio en sus manos: cómo reconciliar las fuertes observaciones hechas a nanoescala con el nivel más débil visto a macroescala, donde los terremotos ocurren realmente.

Mientras que el experimento a nanoescala puede proporcionar datos útiles para este tipo de aplicaciones es también, en sí mismo, un hallazgo importante para el equipo de investigación. "Si podemos entender la física fundamental del fenómeno", añade Tullis, "podremos extrapolarlo más allá de la escala de laboratorio".

"Las investigaciones futuras se destinarán a los niveles de estrés más altos, donde la cantidad de contacto podría empezar a entrar en juego", concluye Carpick.