ICMAB-CSIC - Archivo
MADRID, 30 Ene. (EUROPA PRESS) -
Investigadores del Instituto de Ciencia de Materiales de Barcelona (ICMAB-CSIC) ha creado un nuevo material termoeléctrico: se trata de un papel capaz de convertir el calor residual en energía eléctrica.
Estos dispositivos podrían usarse para generar electricidad a partir de calor residual para alimentar sensores en el campo de la Internet de las Cosas, la Agricultura 4.0 o la Industria 4.0.
"Este dispositivo está compuesto de celulosa producida en laboratorio por unas bacterias, con pequeñas cantidades de un nanomaterial conductor --nanotubos de carbono--, por lo que su producción resulta sostenible y respetuosa con el medio ambiente", explica el investigador del Instituto de Ciencia de Materiales de Barcelona, Mariano Campoy-Quiles.
El investigador sostiene que en un futuro próximo, estos dispositivos se podrían utilizar como dispositivos wearables, en aplicaciones médicas o en deportivas. "Y si la eficiencia del dispositivo se optimizara aún más, este material podría dar lugar a un aislamiento térmico inteligente, o en sistemas de generación eléctrica híbridos fotovoltaicos-termoeléctricos", augura CampoyQuiles en un comunicado.
Además, "debido a la alta flexibilidad de la celulosa y la escalabilidad del proceso, estos dispositivos podrían utilizarse en aplicaciones donde la fuente de calor residual tuviera formas poco regulares o áreas extensas, ya que se podrían recubrir totalmente con el material", indica Anna Roig, investigadora del estudio.
NUEVO PARADIGMA ENERGÉTICO
Como la celulosa bacteriana se puede fabricar en casa, tal vez sea el primer paso hacia un nuevo paradigma energético, donde los usuarios se podrán fabricar sus propios generadores eléctricos.
"En vez de fabricar un material para la energía, lo cultivamos --explica Campoy-Quiles--. Las bacterias, dispersas en un medio de cultivo acuoso que contiene azúcares y los nanotubos de carbono, van produciendo las fibras de nanocelulosa que acaban formando el dispositivo, donde quedan perfectamente dispersos los nanotubos de carbono".
Tal y como comenta la investigadora del estudio Anna Laromaine, se obtiene un material mecánicamente muy resistente, muy flexible y deformable, gracias a las fibras de celulosa, y con una elevada conductividad eléctrica, gracias a los nanotubos de carbono. "La intención es acercarnos al concepto de economía circular, utilizando materiales sostenibles y que no sean tóxicos para el medio ambiente, que se utilicen en poca cantidad, y que se puedan reciclar y reutilizar", explica Roig.
El investigador afirma que, en comparación con otros materiales similares, este "tiene una estabilidad térmica superior a los materiales termoeléctricos basados en polímeros sintéticos, lo que permite llegar hasta los 250ºC. Además, no utiliza elementos tóxicos, y se puede reciclar fácilmente la celulosa, degradándola mediante un proceso enzimático que la convierte en glucosa. Así, se recuperan al mismo tiempo los nanotubos de carbono, que son el elemento más costoso del dispositivo". Además, se puede controlar el grosor, el color e incluso la transparencia.
Campoy-Quiles explica que se han utilizado los nanotubos de carbono por sus dimensiones: "Gracias a su diámetro nanométrico y a las pocas micras de largo, los nanotubos de carbono permiten, con muy poca cantidad (en algunos casos hasta un 1%), conseguir que haya percolación eléctrica, es decir, un camino continuo donde las cargas eléctricas puedan viajar a través del material, permitiendo que la celulosa sea conductora y, al mismo tiempo, aislante térmico".
Además, el hecho de utilizar una cantidad tan pequeña de nanotubos (hasta un 10% como máximo), conservando la eficiencia global de un material que tuviera el 100%, se consigue un ahorro económico y energético muy significativo", añade Campoy-Quiles.
Las dimensiones de los nanotubos de carbono son similares a las nanofibras de celulosa, con lo que se consigue una dispersión homogénea. Además, la inclusión de estos nanomateriales tienen un impacto positivo en las propiedades mecánicas de la celulosa, haciéndola aún más deformable, extensible y resistente, según explica Roig.
El estudio, que se publica en la revista 'Energy & Environmental Science', es el resultado de un proyecto interdisciplinario (FIP-THERMOPAPER) entre diferentes grupos del Instituto de Ciencia de Materiales de Barcelona de la convocatoria 'Frontier Inderdisciplinary Projects', una de las acciones estratégicas del proyecto de excelencia Severo Ochoa.