La misión Marte 2020 investigará convertir CO2 en oxígeno

Instrumentos a bordo de la nave Mars 2020
Foto: NASA
Actualizado: viernes, 1 agosto 2014 13:41

MADRID, 1 Ago. (EUROPA PRESS) -

   El próximo rover que la NASA enviará a Marte en 2020 llevará siete instrumentos cuidadosamente seleccionados para investigaciones sin precedente en el Planeta Rojo. El más llamativo persigue convertir en oxígeno dióxido de carbono de la atmósfera marciana.

   La NASA ha escogido sobre 58 propuestas recibidas en enero de investigadores e ingenieros de todo el mundo. Las propuestas recibidas fueron el doble del número habitual en este tipo de convocatorias, un indicador de lo extraordinario interés por la comunidad científica en la exploración de Marte.

   La Misión Marte 2020 se basa en el diseño del exitoso Curiosity, que aterrizó hace casi dos años, y actualmente está operando en Marte. El nuevo rover llevará hardaware más sofisticado y nuevos instrumentos para realizar evaluaciones geológicas del sitio de aterrizaje del rover, determinar la habitabilidad potencial del medio ambiente, y buscar directamente signos de la antigua vida marciana, informa la NASA..

   "La exploración de Marte será el legado de esta generación, y el rover Marte 2020 será otro paso crítico en el camino de los seres humanos al Planeta Rojo", dijo el administrador de la NASA, Charles Bolden.

GUARDARÁ MUESTRAS PARA SU FUTURO ENVÍO A LA TIERRA

   Los científicos utilizarán el vehículo para identificar y seleccionar una colección de muestras de roca y suelo que almacenará para su posible regreso a la Tierra de una futura misión.  .

   El rover de Marte 2020 también ayudará a avanzar en nuestro conocimiento de cómo los futuros exploradores humanos podrían utilizar los recursos naturales disponibles en la superficie del planeta rojo. La capacidad de vivir de la tierra marciana transformaría la futura exploración del planeta. Los diseñadores de las futuras expediciones humanas pueden utilizar esta misión para entender los peligros planteados por el polvo marciano y demostrar la tecnología para procesar el dióxido de carbono de la atmósfera para producir oxígeno.

Las propuestas seleccionadas son:

   - MastCam-Z: un sistema de cámara avanzada con capacidad estereoscópica de imágenes panorámicas y con capacidad de zoom. El instrumento también determinará la mineralogía de la superficie marciana y ayudará en las operaciones del rover. El investigador principal es James Bell, de la Universidad Estatal de Arizona en Tempe.

   - SuperCam, un instrumento que puede proporcionar imágenes, análisis de la composición química, y la mineralogía. El instrumento también será capaz de detectar la presencia de compuestos orgánicos en rocas y regolito a distancia. El investigador principal es Roger Wiens, del Laboratorio Nacional de Los Alamos, Nuevo México.

   - Instrumento Planetario para Litoquímica en Rayos X (PIXL), un espectrómetro de fluorescencia de rayos X, que también contendrá un reproductor de imágenes de alta resolución para determinar la composición elemental a escala fina de materiales de la superficie de Marte. PIXL proporcionará capacidades que permitan la detección y análisis más detallados de elementos químicos que nunca. La investigadora principal es Abigail Allwood, el Laboratorio de Propulsión a Chorro de la NASA (JPL) en Pasadena, California.

   - Escaneo de Entornos Habitables con Raman y Luminiscencia para Productos Orgánicos y Químicos (SHERLOC), un espectrómetro que proporcionará imágenes a escala fina y utiliza una luz ultravioleta (UV) de láser para determinar la mineralogía a escala fina y detectar compuestos orgánicos. El investigador principal es Luther Beegle, DEL JPL.

   - Experimento ISRU de Oxígeno en Marte (MOXIE), una investigación de tecnología de exploración que va a producir oxígeno a partir del dióxido de carbono atmosférico marciano. El investigador principal es Michael Hecht, Institute of Technology, Cambridge, Massachusetts.

   - Analizador de Dinámicas Ambientales en Marte (MEDA), un conjunto de sensores que permitirá la medición de temperatura, velocidad y dirección del viento, presión, humedad relativa y el tamaño y la forma de polvo. El investigador principal es José Rodríguez-Manfredi, del Centro de Astrobiología, Instituto Nacional de Tecnica Aeroespacial, España.

   - Radar de Imagen para la Exploración del Subsuelo de Marte (RIMFAX), un radar de penetración de tierra que proporcionará resolución de centímetro en la estructura geológica del subsuelo. El investigador principal es Svein-Erik Hamran, del Forsvarets forskning Institute, Noruega.

Leer más acerca de: