La IA se suma a la caza de geoglifos en la Pampa de Nazca

Dos de los geoglifos identificados por aprendizaje profundo
Dos de los geoglifos identificados por aprendizaje profundo - MASATO ET AL./JOURNAL OF ARCHAEOLOGICAL SCIENCE
Actualizado: martes, 13 junio 2023 16:52

   MADRID, 13 Jun. (EUROPA PRESS) -

   El uso de técnicas de Inteligencia Artificial permite la identificación acelerada de candidatos a geoglifos en la Pampa de Nazca (Perú), llena de raras formas gigantes dibujadas en el suelo.

   Como resultado, se descubrieron cuatro geoglifos en la parte norte de esta zona: un humanoide, un par de piernas, un pez y un pájaro. El geoglifo humanoide (5 metros) fue hallado en noviembre de 2019. Por otro lado, los geoglifos de piernas (78m), pez (19m) y ave (17m) están incluidos en los 358 geoglifos identificados al 2022, pero sus fotografías e ilustraciones se publican por primera vez en este trabajo académico.

   El estudio, del Instituto de la Universidad Yamagata de Nasca e IBM Japón, revela identificaciones aproximadamente 21 veces más rápido que el análisis manual de imágenes a simple vista, y ha sido publicado en la revista académica internacional "Journal of Archaeological Science".

   La investigación recurrió a técnicas de detección de objetos basadas en el aprendizaje profundo para descubrir geoglifos figurativos a partir de fotografías aéreas de alta resolución. Las fotografías aéreas cubren un área extensa, y el método tradicional de buscar nuevos candidatos geoglifos a simple vista a partir de fotografías requiere una cantidad considerable de tiempo, lo que representa un desafío en cuanto a eficiencia y escalabilidad, informa en un comunicado la Universidad de Yamagata.

   El área objetivo fue la parte norte de la Pampa de Nazca, donde se concentran los geoglifos figurativos de tipo línea. Debido al requisito de detectar candidatos a geoglifos no confirmados, se necesitó una cuidadosa consideración e ingenio para entrenar un modelo de detección de objetos de aprendizaje profundo utilizando datos de entrenamiento de calidad y cantidad muy limitadas.

   Los patrones de geoglifos conocidos son únicos y complejos. Por lo tanto, es probable que los nuevos geoglifos no tengan el mismo diseño que los existentes. Es difícil encontrar nuevos geoglifos utilizando modelos de detección de objetos de aprendizaje profundo entrenados solo en geoglifos conocidos, ya que es posible que no puedan encontrar características que no existen en los datos de entrenamiento.

   Para abordar este problema, dividieron los geoglifos conocidos en elementos pictóricos relativamente simples para usarlos como datos de entrenamiento para crear un modelo de detección de objetos.

   Además, el tamaño de los geoglifos figurativos de tipo línea conocidos variaba de aproximadamente 10 a 300 metros, lo que planteaba otro desafío en la detección de geoglifos. Para abordar este problema, primero se recortaron las imágenes originales en múltiples escalas y luego se redimensionaron las imágenes recortadas al mismo tamaño tanto para la fase de entrenamiento del modelo de detección de objetos como para la fase de inferencia. Este enfoque permitió intentar la detección de geoglifos de diferentes tamaños.

   Además, la cantidad de geoglifos figurativos de tipo línea en la parte norte de la Pampa de Nasca que podrían usarse como datos de entrenamiento en este estudio se limitó a 21. Idealmente, el aprendizaje profundo requiere miles de puntos de datos de entrenamiento, por lo tanto, usar estos geoglifos como datos de entrenamiento tiene un problema de escasez de datos.

   Para abordar este problema, aumentaron la cantidad de datos de entrenamiento a 307 al dividir los geoglifos en elementos y recortar imágenes en diferentes escalas.

   Usando el modelo de detección de objetos creado con estas medidas, se confirmó que los elementos se detectaron a partir de varios geoglifos conocidos que no se usaron para los datos de entrenamiento, lo que indica la efectividad del método. Luego se revisaron cuidadosamente los resultados de la detección para crear nuevos canidatos a geoglifos para usarse en estudios de campo posteriores.

Leer más acerca de: