ALICANTE 3 May. (EUROPA PRESS) -
El Instituto Tecnológico del Producto Infantil y Ocio (AIJU), con sede en Ibi (Alicante), ha reproducido, junto a 'Avamed Synergy' y con el apoyo del Instituto Valenciana de Competitividad Empresarial (Ivace), la fabricación con impresión 3D de modelos anatómicos de órganos y tejidos para la planificación quirúrgica y formación.
Se trata de un modelo que se enmarca dentro del proyecto DAP4MED, desarrollado por la empresa Avamed Synergy, y que combina hasta seis resinas para reproducir los diferentes tejidos -vasos sanguíneos, tejido óseo, o tejido tumoral- y que ha ayudado en la planificación de una cirugía tumoral compleja, según ha informado la entidad en un comunicado.
La directora general del Ivace, Júlia Company, ha destacado al respecto que esta investigación, financiada con fondos de Generalitat Valenciana, es un "claro ejemplo de la valía de conocimiento que se genera en los centros tecnológicos y de cómo su potencial tiene un valor transversal, del que se pueden beneficiar no sólo las empresas del sector sino otras empresas así como la sociedad en general".
Asimismo, el modelo anatómico, que cuenta con hasta seis materiales para reproducir los diferentes tejidos, tiene una "muy alta precisión" con un nivel de detalle superior a los equipos de tomografía de última generación.
Su desarrollo se ha realizado para un paciente diagnosticado con una lesión de estirpe grasa en el compartimento anterior del muslo derecho, con invasión intermuscular de paredes no definidas que además genera desplazamiento de los tejidos blandos adyacentes, así como compromiso del paquete vasculonervioso.
EXHAUSTIVO PROCESO DE SEGMENTACIÓN
Previo al trabajo de impresión 3D, Avamed Synergy tomó, como punto de partida la tomografía (TC) realizada al paciente y realizó un exhaustivo proceso de segmentación con el que se diferenció y separaron los diferentes tejidos afectados, la complejidad de la lesión y su alcance.
Tras aislar digitalmente las estructuras de interés se han generado ficheros independientes y se han modelado distintos tejidos de la zona. De esta forma, el listado de elementos posicionados se convierte a formato STL que procesará la impresora 3D.
En esta fase, AIJU comenzó la validación de elementos para el proceso de impresión, analizó los ficheros y modificó o reparó cualquier información que no era apta para la impresión 3D. Así, se definen las propiedades físicas que deben tener los diferentes tejidos, de modo que sean lo más afines al tejido real del paciente.
SIMULACIÓN DE TEJIDOS
Posteriormente, se han estudiado y seleccionado los diferentes materiales y combinaciones de material posibles para conseguir simular los tejidos involucrados como vasos sanguíneos, tejido óseo incluso con interior trabecular, así como tejido tumoral afín al detectado.
Para este último, AIJU ha trabajado con material flexible con transparencia que ha permitido visualizar ramificaciones en su interior para apoyar al cirujano en la planificación.
El ingeniero responsable de 'AIJU Manufacturing', Nacho Sandoval, ha explicado que "las posibilidades de impresión con la combinación de hasta seis resinas distintas permite obtener de forma simultánea modelos multimaterial con un aspecto y comportamiento que simula los diferentes tejidos que se han seleccionado para el estudio".
Asimismo, culmina que los beneficios de este tipo de biomodelos hacen que los cirujanos "dispongan de la máxima información precisa acerca de su localización, alcance, volumen real del defecto a resecar y los márgenes de resección negativos que pueden afectar a otras estructuras vitales y que se ven comprometidas en la resección tumoral".
Por tanto, sus ventajas abarcan "desde la planificación quirúrgica, el ensayo quirúrgico y la formación clínica", ya que la posibilidad de trasladar estos biomodelos a facultades son "muy amplias" y permiten su análisis a estudiantes de Medicina, incluso con la impresión de sucesivas réplicas para el correcto entrenamiento de este tipo de intervenciones.
En este sentido, el director general de Avamed Synergy, Lucas Antonio Díez, indica que "la vida de los biomodelos una vez planificado, ensayado e intervenido el caso clínico, no ha terminado": "Su uso formativo puede seguir siendo lo más indicado".