JAÉN, 4 Jul. (EUROPA PRESS) -
Un equipo de investigadores de la Escuela Politécnica Superior de Linares de la Universidad de Jaén (UJA) y la Escuela Universitaria Politécnica de Ferrol de la Universidad de La Coruña ha desarrollado un sensor virtual basado en varios algoritmos de inteligencia artificial para predecir la concentración de hidrógeno en el gas combustible producido a partir de la gasificación de pellets de orujillo de oliva.
Este gas producto, también denominado gas pobre o gas de gasógeno, es de bajo poder calorífico y está formado principalmente por hidrógeno, monóxido de carbono, metano (gases combustibles), dióxido de carbono, nitrógeno y vapor de agua.
La novedad de este sensor específico es su capacidad para detectar anomalías, errores y desviaciones de la concentración de este compuesto en el gas que se genera en una planta de gasificación experimental alimentada con este subproducto de la industria oleícola. Además, se puede utilizar de forma remota sin necesidad de colocarlo físicamente en las instalaciones, según ha informado este lunes la Fundación Descubre.
En el artículo 'A hybrid intelligent model to predict the hydrogen concentration in the producer gas from a downdraft gasifier' publicado en la revista 'International journal of hydrogen energy', los expertos apuntan también que la producción de hidrógeno renovable mediante gasificación de pellets de orujillo es actualmente más asequible en términos de consumo de energía primaria frente a la producción electrolítica de hidrógeno.
Este proceso de producción de hidrógeno a partir de energía eléctrica, denominado electrólisis, consiste en la separación del agua en sus elementos, hidrógeno y oxígeno, cuando se aplica una corriente eléctrica externa.
Al mismo tiempo, proponen la posibilidad del uso del orujillo para obtener hidrógeno, más allá de su empleo habitual como materia prima para producir energía eléctrica o térmica.
Durante la fase de pruebas desarrollada en una planta de gasificación experimental instalada en el Centro Ifapa Venta de Llano, del municipio jiennense de Mengíbar, los investigadores evaluaron y calibraron varios modelos de inteligencia artificial diferentes con el objetivo de desarrollar el sensor virtual.
De todos ellos, seleccionaron el modelo que ofrecía mejores resultados tras su entrenamiento. Combina los algoritmos de redes neuronales, que simulan el comportamiento del cerebro humano y enseñan a los dispositivos a aprender de manera similar, y los de máquinas de vectores de soporte para regresión, eficaces para el análisis de datos y reconocimiento de patrones.
"Tras probar la combinación de ambos, observamos que el modelo híbrido resultante proporcionaba un porcentaje de error muy bajo", ha explicado el investigador de la Escuela Politécnica Superior de Linares de la Universidad de Jaén, Roque Aguado.
Para obtener estos resultados, los expertos entrenaron el modelo matemático indicándole la composición del gas producto. Para identificar su composición y las concentraciones de cada elemento, los investigadores utilizaron varios sensores físicos.
"El gas producto se puede utilizar en aplicaciones energéticas como combustible gaseoso en motores de combustión interna, pilas de combustible o microturbinas, o incluso en síntesis química tras la separación de gases inertes como el nitrógeno", ha señalado Aguado.
DETECTORES A MEDIDA
Para ello, realizaron ensayos experimentales en esta planta de gasificación y emplearon sensores de infrarrojo no dispersivo para medir la concentración de gases como el metano, el dióxido de carbono y el monóxido de carbono, y sensores específicos en el caso del hidrógeno y el oxígeno. "El hidrógeno precisa un detector de conductividad térmica o catarómetro y el oxígeno requiere uno de captura de electrones", ha comentado.
Con el fin de generar este gas, los expertos emplearon pellets de orujillo. Este subproducto se obtiene de los restos del proceso de trituración de la aceituna: hueso, piel, restos de materia grasa, residuos y alpechines, y habitualmente se usa como combustible.
"La gasificación es un proceso que convierte la biomasa sólida, en este caso orujillo, en un gas combustible a través de su oxidación parcial. Para ello, por razones económicas se emplea aire como agente oxidante. Aunque la gasificación con vapor de agua u oxígeno concentrado en lugar de aire origina un gas con mayor contenido energético denominado gas de síntesis, su producción conlleva un mayor coste", ha indicado el investigador.
Tras las pruebas experimentales, los expertos proponen su uso para producir hidrógeno. El objetivo, según ha añadido, es sacar más provecho y rendimiento a un subproducto como el orujillo que hasta ahora sólo se utiliza para la producción convencional de energía eléctrica o térmica.
"También se podría concentrar el hidrógeno y emplearlo como medio de almacenamiento de energía o como reactivo en la producción de compuestos químicos de valor añadido en la industria química, como el amoniaco, en la farmacéutica o en la alimentaria como por ejemplo, con la hidrogenación de grasas", ha afirmado.
NUEVOS MODELOS
Después de este estudio, los expertos plantean la incorporación de nuevos modelos inteligentes para predecir los restantes componentes gaseosos del gas producto. Estudian la posibilidad de desarrollar modelos más complejos teniendo en cuenta otras entradas, como la temperatura, la presión o los caudales.
Ha apuntado que, de esta manera, se podría reducir el número de sensores instalados en la planta de gasificación experimental y se podría realizar la detección de fallos o desviaciones en cualquiera de ellos.
Este trabajo de investigación ha sido financiado por la Consejería de Transformación Económica, Industria, Conocimiento y Universidades de la Junta de Andalucía, Fondos Feder, Ministerio de Universidades y la Consellería de Educación, Universidade e Formación Profesional de la Xunta de Galicia.